FP2 Paper 4 adapted 2004

1. (a) Show that $(r+1)^{3}-(r-1)^{3} \equiv A r^{2}+B$, where A and B are constants to be found.
(b) Prove by the method of differences that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1), n>1$.
(6)(Total 8 marks)
2.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y\left(1+\frac{3}{x}\right)=\frac{1}{x^{2}}, \quad x>0 .
$$

(a) Verify that $x^{3} \mathrm{e}^{x}$ is an integrating factor for the differential equation.
(b) Find the general solution of the differential equation.
(c) Given that $y=1$ at $x=1$, find y at $x=2$.
(3)(Total 10 marks)
3. (a) Sketch, on the same axes, the graph of $y=|(x-2)(x-4)|$, and the line with equation $y=6-2 x$.
(b) Find the exact values of x for which $|(x-2)(x-4)|=6-2 x$.
(c) Hence solve the inequality $|(x-2)(x-4)|<6-2 x$.
(2)(Total 11 marks)
4.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=65 \sin 2 x, x>0
$$

(a) Find the general solution of the differential equation.
(b) Show that for large values of x this general solution may be approximated by a sine function and find this sine function.
(3)(Total 12 marks)
5. (a) Sketch the curve with polar equation $r=3 \cos 2 \theta, \quad-\frac{\pi}{4} \leq \theta<\frac{\pi}{4}$
(b) Find the area of the smaller finite region enclosed between the curve and the half-line $\theta=\frac{\pi}{6}$
(c) Find the exact distance between the two tangents which are parallel to the initial line.
(8)(Total 16 marks)
6. Find the complete set of values of x for which

$$
\left|x^{2}-2\right|>2 x
$$

7. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=x \tag{5}
\end{equation*}
$$

Given that $y=1$ at $x=0$,
(b) find the exact values of the coordinates of the minimum point of the particular solution curve,
(c) draw a sketch of this particular solution curve.
(2)(Total 11 marks)
8. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 y=2 \mathrm{e}^{-t} \tag{6}
\end{equation*}
$$

(b) Find the particular solution that satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ at $t=0$.
(6)(Total 12 marks)
9. The diagram is a sketch of the two curves
C_{1} and C_{2} with polar equations
$C_{1}: r=3 a(1-\cos \theta),-\pi \leq \theta<\pi$
$\mathrm{C}_{2}: r=a(1+\cos \theta),-\pi \leq \theta<\pi$.

The curves meet at the pole O, and at the points A and B.
(a) Find, in terms of a, the polar coordinates of the points A and B.
(b) Show that the length of the line $A B$ is $\frac{3 \sqrt{ } 3}{2} a$.

The region inside C_{2} and outside C_{1} is shown shaded in the diagram above.
(c) Find, in terms of a, the area of this region.

A badge is designed which has the shape of the shaded region.
Given that the length of the line $A B$ is 4.5 cm ,
(d) calculate the area of this badge, giving your answer to three significant figures.
10. Given that $y=\tan x$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
(b) Find the Taylor series expansion of $\tan x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$ up to and including the term in $\left(x-\frac{\pi}{4}\right)^{3}$.
(3)
(c) Hence show that $\tan \frac{3 \pi}{10} \approx 1+\frac{\pi}{10}+\frac{\pi^{2}}{200}+\frac{\pi^{3}}{3000}$.
(2)
(Total 8 marks)
11. (b) Hence find the Maclaurin series expansion of $\mathrm{e}^{x} \cos x$, in ascending powers of x, up to and including the term in x^{4}.
12. The transformation T from the complex z-plane to the complex w-plane is given by

$$
w=\frac{z+1}{z+\mathrm{i}}, \quad z \neq-\mathrm{i} .
$$

(a) Show that T maps points on the half-line $\arg (z)=\frac{\pi}{4}$ in the z-plane into points on the circle $|w|=1$ in the w-plane.
(b) Find the image under T in the w-plane of the circle $|z|=1$ in the z-plane.
(c) Sketch on separate diagrams the circle $|Z|=1$ in the z-plane and its image under T in the w-plane.
(d) Mark on your sketches the point P, where $z=\mathrm{i}$, and its image Q under T in the w-plane.

